论文标题

基于残留块的多标签分类和本地化网络,具有椎骨标记的积分回归

Residual Block-based Multi-Label Classification and Localization Network with Integral Regression for Vertebrae Labeling

论文作者

Qin, Chunli, Yao, Demin, Zhuang, Han, Wang, Hui, Shi, Yonghong, Song, Zhijian

论文摘要

椎骨在CT扫描中的准确鉴定和定位是临床脊柱诊断和治疗的关键和标准预处理步骤。现有方法主要基于多个神经网络的整合,其中大多数使用高斯热图来定位椎骨的质心。但是,使用热图获得椎骨的质心坐标的过程是不可差的,因此不可能训练网络直接标记椎骨。因此,对于CT扫描上椎骨坐标的端到端差分训练,在本研究中提出了强大而准确的自动椎间上标记算法。首先,开发了一种新型的基于残差的多标签分类和本地化网络,该网络可以捕获多尺度功能,但也利用残差模块和跳过连接来融合多级功能。其次,为了解决寻找坐标的过程是不可差异的,空间结构不可破坏的问题,在本地化网络中使用了积分回归模块。它结合了热图表示的优势和直接回归坐标以实现端到端训练,并且可以与基于热图的任何关键点检测方法兼容。最后,进行了椎骨的多标签分类,该分类使用双向长期记忆(BI-LSTM)来增强长上下文信息的学习以提高分类性能。在具有挑战性的数据集上评估了所提出的方法,结果明显好于最新方法(平均本地化误差<3mm)。

Accurate identification and localization of the vertebrae in CT scans is a critical and standard preprocessing step for clinical spinal diagnosis and treatment. Existing methods are mainly based on the integration of multiple neural networks, and most of them use the Gaussian heat map to locate the vertebrae's centroid. However, the process of obtaining the vertebrae's centroid coordinates using heat maps is non-differentiable, so it is impossible to train the network to label the vertebrae directly. Therefore, for end-to-end differential training of vertebra coordinates on CT scans, a robust and accurate automatic vertebral labeling algorithm is proposed in this study. Firstly, a novel residual-based multi-label classification and localization network is developed, which can capture multi-scale features, but also utilize the residual module and skip connection to fuse the multi-level features. Secondly, to solve the problem that the process of finding coordinates is non-differentiable and the spatial structure is not destructible, integral regression module is used in the localization network. It combines the advantages of heat map representation and direct regression coordinates to achieve end-to-end training, and can be compatible with any key point detection methods of medical image based on heat map. Finally, multi-label classification of vertebrae is carried out, which use bidirectional long short term memory (Bi-LSTM) to enhance the learning of long contextual information to improve the classification performance. The proposed method is evaluated on a challenging dataset and the results are significantly better than the state-of-the-art methods (mean localization error <3mm).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源