论文标题

nilpotent抗强制性代数的代数和几何分类

The algebraic and geometric classification of nilpotent anticommutative algebras

论文作者

Kaygorodov, Ivan, Khrypchenko, Mykola, Lopes, Samuel A.

论文摘要

我们提供代数和几何分类为$ 6 $维的nilpotent抗道代数。具体来说,我们发现,在同构中,有14美元的一名参数家庭,$ 6 $维度的nilpotent抗议代数,并补充了$ 130 $ $ 130 $的额外同构班级。相应的几何变化是不可约束的,并取决于一个代数的Zariski闭合。特别是,没有刚性$ 6 $维的尼尔替代抗抗抗距离代数。

We give algebraic and geometric classifications of $6$-dimensional complex nilpotent anticommutative algebras. Specifically, we find that, up to isomorphism, there are $14$ one-parameter families of $6$-dimensional nilpotent anticommutative algebras, complemented by $130$ additional isomorphism classes. The corresponding geometric variety is irreducible and determined by the Zariski closure of a one-parameter family of algebras. In particular, there are no rigid $6$-dimensional complex nilpotent anticommutative algebras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源