论文标题
分布式资源分配的弹性原始偶二优化算法
Resilient Primal-Dual Optimization Algorithms for Distributed Resource Allocation
论文作者
论文摘要
用于多代理资源分配的分布式算法可以在许多网络物理系统中对集中式算法提供隐私性和可扩展性。但是,这些算法的分布性质可以使这些系统容易受到中间人攻击的影响,这些系统可能导致资源分配方案的不连贯和不可行性。在本文中,当系统中存在拜占庭式攻击者时,我们提出了基于原始偶尔优化的攻击弹性分布式算法。特别是,我们通过强大的统计数据设计了静态和动态模拟攻击的攻击原始二重式算法。对于静态模拟攻击,我们制定了一个可靠的优化模型,并表明我们的算法保证了融合到可靠问题的最佳解决方案的邻里。另一方面,动态模拟攻击方案不需要强大的优化模型,我们能够设计一种算法,该算法被证明会收敛到原始问题的近乎最佳解决方案。我们通过理论和计算研究分析了算法的性能。
Distributed algorithms for multi-agent resource allocation can provide privacy and scalability over centralized algorithms in many cyber-physical systems. However, the distributed nature of these algorithms can render these systems vulnerable to man-in-the-middle attacks that can lead to non-convergence and infeasibility of resource allocation schemes. In this paper, we propose attack-resilient distributed algorithms based on primal-dual optimization when Byzantine attackers are present in the system. In particular, we design attack-resilient primal-dual algorithms for static and dynamic impersonation attacks by means of robust statistics. For static impersonation attacks, we formulate a robustified optimization model and show that our algorithm guarantees convergence to a neighborhood of the optimal solution of the robustified problem. On the other hand, a robust optimization model is not required for the dynamic impersonation attack scenario and we are able to design an algorithm that is shown to converge to a near-optimal solution of the original problem. We analyze the performances of our algorithms through both theoretical and computational studies.