论文标题

差异私人组合云拍卖

Differentially Private Combinatorial Cloud Auction

论文作者

Ni, Tianjiao, Chen, Zhili, Chen, Lin, Zhong, Hong, Zhang, Shun, Xu, Yan

论文摘要

云服务提供商通常为具有不同要求的云用户提供不同类型的虚拟机(VM)。由于其有效性和公平性,拍卖已被广泛应用于这种异质资源分配中。最近,已经提出了几种防止策略组合云拍卖机制。但是,他们无法保护用户的投标隐私,免受拍卖结果的推断。在本文中,我们设计了一种差异化的组合云拍卖机制(DPCA)来解决此隐私问题。从技术上讲,我们采用指数机制来计算一个与相应收入成正比的概率的清算单位价格向量。我们进一步提高了减少运行时间的机制,同时通过计算单个清算单位价格或一次清算单位价格的亚组,从而分别改善了DPCA-S及其广义版本DPCA-M,该机制。从理论上讲,我们证明我们的机制可以保证差异隐私,近似真实性和高收入。广泛的实验结果表明,DPCA可以以相对较高的复杂性产生近乎最佳的收入,而改进的机制可以在拍卖收入和运行时间之间实现可调整的权衡。

Cloud service providers typically provide different types of virtual machines (VMs) to cloud users with various requirements. Thanks to its effectiveness and fairness, auction has been widely applied in this heterogeneous resource allocation. Recently, several strategy-proof combinatorial cloud auction mechanisms have been proposed. However, they fail to protect the bid privacy of users from being inferred from the auction results. In this paper, we design a differentially private combinatorial cloud auction mechanism (DPCA) to address this privacy issue. Technically, we employ the exponential mechanism to compute a clearing unit price vector with a probability proportional to the corresponding revenue. We further improve the mechanism to reduce the running time while maintaining high revenues, by computing a single clearing unit price, or a subgroup of clearing unit prices at a time, resulting in the improved mechanisms DPCA-S and its generalized version DPCA-M, respectively. We theoretically prove that our mechanisms can guarantee differential privacy, approximate truthfulness and high revenue. Extensive experimental results demonstrate that DPCA can generate near-optimal revenues at the price of relatively high time complexity, while the improved mechanisms achieve a tunable trade-off between auction revenue and running time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源