论文标题

Lagrangian多阶段随机混合整数编程的双重决策规则

Lagrangian Dual Decision Rules for Multistage Stochastic Mixed Integer Programming

论文作者

Daryalal, Maryam, Bodur, Merve, Luedtke, James R.

论文摘要

可以通过限制政策遵循决策规则来近似多阶段随机程序。由于需要导致整体决策的决策规则,因此很难将此想法直接应用于整数决策问题。在这项工作中,我们为多阶段的随机混合智能编程(MSMIP)介绍了拉格朗日双重决策规则(LDDRS),这些规则通过在MSMIP的拉格朗日双重双重上应用决策规则来克服这一困难。我们提出了两种基于舞台(SW)和非期望(NA)拉格朗日双重二元组的新边界技术,其中Lagrangian乘数策略受LDDR限制。我们演示了这些双重的解决方案如何用于驱动原始策略。与大多数现有的MSMIP方法相比,我们的建议需要更少的假设。我们比较受限制双重的理论强度,并表明受限制的二元双重二线至少可以提供与受限制的SW双重二元相同的界限。在我们对两个问题类别(一项传统和一本小说)的数值研究中,我们观察到,与现有的MSMIP问题相比,所提出的LDDR方法与现有的通用通用边界方法相比产生了显着的最佳差距。

Multistage stochastic programs can be approximated by restricting policies to follow decision rules. Directly applying this idea to problems with integer decisions is difficult because of the need for decision rules that lead to integral decisions. In this work, we introduce Lagrangian dual decision rules (LDDRs) for multistage stochastic mixed-integer programming (MSMIP) which overcome this difficulty by applying decision rules in a Lagrangian dual of the MSMIP. We propose two new bounding techniques based on stagewise (SW) and nonanticipative (NA) Lagrangian duals where the Lagrangian multiplier policies are restricted by LDDRs. We demonstrate how the solutions from these duals can be used to drive primal policies. Our proposal requires fewer assumptions than most existing MSMIP methods. We compare the theoretical strength of the restricted duals and show that the restricted NA dual can provide relaxation bounds at least as good as the ones obtained by the restricted SW dual. In our numerical study on two problem classes, one traditional and one novel, we observe that the proposed LDDR approaches yield significant optimality gap reductions compared to existing general-purpose bounding methods for MSMIP problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源