论文标题
大大程度的两级群体的排名
The rank of the 2-class group of some fields with large degree
论文作者
论文摘要
令$ n \ geq 3 $为整数,而$ d $无奇的整数。我们将计算$ l_ {n,d}的$ 2 $ -Class组的排名:= \ m athbb {q}(ζ_{2^n},\ sqrt {d})$,当$ d $的所有素数与$ d $的所有素数与$ \ pm 3 \ pm pm pmod 8 $ 9 $ 9 \ $ 9 \ pmod} $ pmod均均等。
Let $n\geq 3$ be an integer and $d$ an odd square-free integer. We shall compute the rank of the $2$-class group of $L_{n,d}:=\mathbb{Q}(ζ_{2^n},\sqrt{d})$, when all the prime divisors of $d$ are congruent to $\pm 3\pmod 8$ or $9\pmod{16}$.