论文标题

3D湍流重新连接:理论,测试和天体物理意义

3D Turbulent Reconnection: Theory, Tests and Astrophysical Implications

论文作者

Lazarian, Alex, Eyink, Gregory L., Jafari, Amir, Kowal, Grzegorz, Li, Hui, Xu, Siyao, Vishniac, Ethan T.

论文摘要

磁重新连接,磁场中的拓扑变化,是磁化等离子体中的基本过程。它与磁场歼灭区域中的能量释放有关,但这只是该过程的一个方面。天体物理流通常具有很大的雷诺数,并且预计与观察结果一致。在强湍流中,磁性线在各个尺度上不断重新连接,使磁重新连接成为湍流级联的内在部分。我们注意到,这与将磁线作为持续的动力元素的通常做法不一致。从Lazarian&Vishniac(1999)开始的许多理论,数值和观察性研究表明,3D湍流使磁重新连接迅速,并且这两个过程与本质上连接。我们讨论了在湍流存在下对磁通量冻结的教科书概念的巨大侵犯,并证明在存在湍流的情况下,就磁重新连接而言,血浆效应对湍流具有亚限制性。这证明了在比相关的等离子体尺度大得多的MHD样磁重连接合理的合理性。我们讨论支持湍流重新连接模型的数值和观察证据。特别是,我们表明撕裂的重新连接在3D中被抑制,与2D情况不同,3D重新连接会引起使重新连接独立于电阻率的湍流。我们表明,湍流重新连接极大地影响了关键的天体物理过程,例如恒星形成,湍流发电机,宇宙射线的加速度。我们对“重新介导的湍流”的概念提供了批评,并解释了为什么动荡的重新连接与增强的湍流电阻率和过度抗性以及后者有致命的概念缺陷。

Magnetic reconnection, topological change in magnetic fields, is a fundamental process in magnetized plasmas. It is associated with energy release in regions of magnetic field annihilation, but this is only one facet of this process. Astrophysical flows normally have very large Reynolds numbers and are expected to be turbulent, in agreement with observations. In strong turbulence magnetic lines constantly reconnect everywhere at all scales, making magnetic reconnection an intrinsic part of turbulent cascade. We note that this is inconsistent with the usual practice of regarding magnetic lines as persistent dynamical elements. A number of theoretical, numerical, and observational studies, starting with Lazarian & Vishniac (1999), demonstrated that 3D turbulence makes magnetic reconnection fast and that these two processes are intrinsically connected. We discuss the dramatic violation of the textbook concept of magnetic flux-freezing in the presence of turbulence and demonstrate that in the presence of turbulence the plasma effects are subdominant to turbulence as far as the magnetic reconnection is concerned. This justifies an MHD-like treatment of magnetic reconnection at scales much larger than the relevant plasma scales. We discuss numerical and observational evidences supporting the turbulent reconnection model. In particular, we show that tearing reconnection is suppressed in 3D and, unlike the 2D case, the 3D reconnection induces turbulence that makes reconnection independent of resistivity. We show that turbulent reconnection dramatically affects the key astrophysical processes, e.g., star formation, turbulent dynamo, acceleration of cosmic rays. We provide criticism of the concept of "reconnection-mediated turbulence" and explain why turbulent reconnection is very different from enhanced turbulent resistivity and hyper-resistivity, and why the latter has fatal conceptual flaws.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源