论文标题

数据服务组成中的隐私

Privacy in Data Service Composition

论文作者

Barhamgi, Mahmoud, Perera, Charith, Yu, Chia-Mu, Benslimane, Djamal, Camacho, David, Bonnet, Christine

论文摘要

在现代信息系统中,通常由具有不同隐私政策的自动数据收集服务收集和管理不同的信息功能。回答许多最终用户的合法查询需要从多种此类服务中集成数据。但是,数据集成通常受到缺乏可信赖的实体(通常称为调解者)的阻碍,服务可以通过该实体共享其数据并委派其隐私政策的执行。在本文中,我们提出了一种灵活的隐私数据集成方法,用于回答数据集成查询,而无需值得信赖的调解员。在我们的方法中,允许服务在当地执行其隐私政策。调解员被认为是不受信任的,并且只能访问加密信息,以允许其链接在不同服务上的数据主体。服务,根据新的隐私要求,被称为k保护,限制隐私泄漏,无法推断彼此持有的数据的信息。最终用户反过来只能访问隐私化数据。我们使用示例和来自Healthcare应用程序领域的真实数据集评估了我们的方法。从隐私保护和绩效的角度来看,结果是有希望的。

In modern information systems different information features, about the same individual, are often collected and managed by autonomous data collection services that may have different privacy policies. Answering many end-users' legitimate queries requires the integration of data from multiple such services. However, data integration is often hindered by the lack of a trusted entity, often called a mediator, with which the services can share their data and delegate the enforcement of their privacy policies. In this paper, we propose a flexible privacy-preserving data integration approach for answering data integration queries without the need for a trusted mediator. In our approach, services are allowed to enforce their privacy policies locally. The mediator is considered to be untrusted, and only has access to encrypted information to allow it to link data subjects across the different services. Services, by virtue of a new privacy requirement, dubbed k-Protection, limiting privacy leaks, cannot infer information about the data held by each other. End-users, in turn, have access to privacy-sanitized data only. We evaluated our approach using an example and a real dataset from the healthcare application domain. The results are promising from both the privacy preservation and the performance perspectives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源