论文标题
零除数图$γ[\ mathbb {z} _n] $
Eulerian of the Zero Divisor graph $Γ[\mathbb {Z}_n]$
论文作者
论文摘要
$γ[r] $表示的交换环$ r $的零除数图是一个图形,其顶点为$ r $的非零零除数,如果它们的产品为零,则两个顶点相邻。对于任何自然数字$ n $,我们考虑零除数图$γ[\ mathbb {z} _n] $,并找出哪些图是欧拉图。
The Zero divisor Graph of a commutative ring $R$, denoted by $Γ[R]$, is a graph whose vertices are non-zero zero divisors of $R$ and two vertices are adjacent if their product is zero. We consider the zero divisor graph $Γ[\mathbb{Z}_n]$, for any natural number $n$ and find out which graphs are Eulerian graphs.