论文标题
二维抗fiferroelectric隧道连接点
Two-dimensional antiferroelectric tunnel junction
论文作者
论文摘要
铁电隧道连接(FTJ)由两种由薄铁电屏障隔开的金属电极组成,最近引起了对技术应用的重大兴趣,因为纳米级电阻性开关装置。到目前为止,大多数现有的FTJ都基于钙钛矿 - 氧化屏障层。最近发现的二维(2D)范德华铁电材料开辟了一条新途径,以实现具有新功能和NM尺寸的隧道连接。由于这些材料中原子层之间的弱耦合弱,因此可以通过施加的电压来控制它们之间的相对偶极对齐。这允许在铁电和抗佛罗自电总和之间进行过渡,从而导致电子结构的显着变化。在这里,我们建议实现2D防反式隧道连接(AFTJS),该隧道连接(AFTJS)基于BiLayer $ _2 $ x $ _3 $(X = S,SE,TE,TE)障碍和不同的2D电极。使用第一原理密度功能理论计算,我们证明了$ _2 $ x $ _3 $ biLayers在$ _2 $ x $ _3 $中表现出稳定的铁电和抗抗铁电态,并通过相当的能屏障隔开,从而支持这些州之间的非挥霍。我们使用电子传输的量子力学建模,我们探索平面内和平面外隧道横跨$ _2 $ s $ _3 $ van der waals双层双层,并预测巨大的隧道电势(TER)效应(TER)效果以及多个非挥发性抗性状态,由铁电抗良好级别的Froleectric-Antiferroelectrorcrecrorcrectric transitions驱动。我们的提案开辟了一条新的途径,使用2D AFTJ实现具有超高存储密度的纳米级记忆设备。
Ferroelectric tunnel junctions (FTJs), which consist of two metal electrodes separated by a thin ferroelectric barrier, have recently aroused significant interest for technological applications as nanoscale resistive switching devices. So far, most of existing FTJs have been based on perovskite-oxide barrier layers. The recent discovery of the two-dimensional (2D) van der Waals ferroelectric materials opens a new route to realize tunnel junctions with new functionalities and nm-scale dimensions. Due to the weak coupling between the atomic layers in these materials, the relative dipole alignment between them can be controlled by applied voltage. This allows transitions between ferroelectric and antiferroelectric orderings, resulting in significant changes of the electronic structure. Here, we propose to realize 2D antiferroelectric tunnel junctions (AFTJs), which exploit this new functionality, based on bilayer In$_2$X$_3$ (X = S, Se, Te) barriers and different 2D electrodes. Using first-principles density functional theory calculations, we demonstrate that the In$_2$X$_3$ bilayers exhibit stable ferroelectric and antiferroelectric states separated by sizable energy barriers, thus supporting a non-volatile switching between these states. Using quantum-mechanical modeling of the electronic transport, we explore in-plane and out-of-plane tunneling across the In$_2$S$_3$ van der Waals bilayers, and predict giant tunneling electroresistance (TER) effects and multiple non-volatile resistance states driven by ferroelectric-antiferroelectric order transitions. Our proposal opens a new route to realize nanoscale memory devices with ultrahigh storage density using 2D AFTJs.