论文标题

使用参数化误差模型对低功率近似添加剂的优化DSP应用程序优化

Optimization of DSP Applications Using Parameterized Error Models for Low Power Approximate Adders

论文作者

Dharmaraj, Celia, Vasudevan, Vinita, Chandrachoodan, Nitin

论文摘要

近年来,针对误差耐药应用的近年,近似电路设计已获得显着性。在本文中,我们首先证明了普遍使用的假设,即对加法器的输入是均匀分布的,导致多级电路的误差统计数据不准确。为了克服此问题,我们得出了可以在任何优化框架中使用的参数化错误模型,以优化近似位的数量。我们还表明,要准确计算均方根误差,优化框架不仅需要考虑到加法器的功能,还需要考虑其在电路中的位置,父母的功能以及父块中的近似位。我们证明了在包含近似加成器的DSP系统的噪声功率的预测中的准确性显着提高。

Approximate circuit design has gained significance in recent years targeting error tolerant applications. In this paper, we first demonstrate that the commonly used assumption that the inputs to the adder are uniformly distributed results in an inaccurate prediction of error statistics for multi-level circuits. To overcome this problem, we derive parameterized error models that can be used within any optimization framework in order to optimize the number of approximate bits. We also show that in order to accurately compute the mean square error, the optimization framework needs to take into account not just the functionality of the adder, but also its position in the circuit, functionality of its parents and the number of approximate bits in the parent blocks. We demonstrate a significant improvement of accuracy in the prediction of the noise power of DSP systems containing approximate adders.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源