论文标题
在渐近抗DE保姆时空的厚毛线上的载体场定位的广义几何耦合
Generalized geometrical coupling for vector field localization on thick brane in asymptotic Anti-de Sitter spacetime
论文作者
论文摘要
众所周知,五维的自由矢量场$ a_ {m} $不能定位在randall-sundrum(rs)类似厚的麸皮上,即,嵌入渐近抗De的厚的抗抗(ADS)spacetime中的厚麸皮。为了将矢量场定位在RS样厚的brane上,应引入额外的耦合项。在本文中,我们通过将两个质量术语($αrg^{mn} a_ {m} a_ {n}+βr^{mn} a_ {m} a_ {m} a_ {n} $)添加来概括几何耦合机制。我们将基本矢量字段$ a_ {m} $分解为三个部分:横向矢量部分$ \ hat {a}_μ$,标量零件$ ϕ $和$ a_ {5} $。然后,我们发现横向矢量零件$ \ hat {a}_μ$ $ $从标量零件中分离出来。为了消除$ \ hat {a} _ $的速旋模式,两个耦合参数$α$和$β$应该满足关系。结合限制条件,我们可以将组合参数作为$γ= \ frac {3} {2} {2} \ pm \ sqrt {1+12α} $。只有$γ> 1/2 $,$ \ hat {a}_μ$的零模式才能将其定位在rs状的厚brane上。我们还研究了矢量部分的共振特征$ \ hat {a} _ $,用于一般RS的厚brane,并通过选择相对概率方法,带有扭曲因子$ a(z)= - \ ln(z)= - \ ln(1+k^2z^2)/2 $。结果表明,只有$γ> 3 $,可以存在巨大的共振kaluza-klein模式。谐振kaluza-klein状态的数量随组合参数$γ$的增加而增加,并且随着我们宇宙的年龄,第一个共振状态的寿命可能足够长。这表明矢量共振可能被认为是暗物质的候选者之一。
It is known that a five-dimensional free vector field $A_{M}$ cannot be localized on Randall-Sundrum (RS)-like thick branes, namely, the thick branes embedded in asymptotic Anti-de Sitter (AdS) spacetime. In order to localize a vector field on the RS-like thick brane, an extra coupling term should be introduced. In this paper, we generalize the geometrical coupling mechanism by adding two mass terms ($αRg^{MN}A_{M}A_{N}+βR^{MN}A_{M}A_{N}$) into the action. We decompose the fundamental vector field $A_{M}$ into three parts: transverse vector part $\hat{A}_μ$, scalar parts $ϕ$ and $A_{5}$. Then, we find that the transverse vector part $\hat{A}_μ$ decouples from the scalar parts. In order to eliminate the tachyonic modes of $\hat{A}_μ$, the two coupling parameters $α$ and $β$ should satisfy a relation. Combining the restricted condition, we can get a combination parameter as $γ=\frac{3}{2}\pm\sqrt{1+12α}$. Only if $γ>1/2$, the zero mode of $\hat{A}_μ$ can be localized on the RS-like thick brane. We also investigate the resonant character of the vector part $\hat{A}_μ$ for the general RS-like thick brane with the warp factor $A(z)=-\ln(1+k^2z^2)/2$ by choosing the relative probability method. The result shows that, only for $γ>3$, the massive resonant Kaluza-Klein modes can exist. The number of resonant Kaluza-Klein states increases with the combination parameter $γ$, and the lifetime of the first resonant state can be long enough as the age of our universe. This indicates that the vector resonances might be considered as one of the candidates of dark matter.