论文标题

间隔值数据的功能线性模型

Functional linear models for interval-valued data

论文作者

Beyaztas, Ufuk, Shang, Han Lin, Abdel-Salam, Abdel-Salam G.

论文摘要

以特定格式的大型数据库的聚合是一个经常使用的过程,可以使数据易于管理。间隔值数据是通过这种聚合过程生成的数据类型之一。使用传统方法来分析间隔值数据导致信息丢失,因此,已经提出了几种间隔值数据模型来从此类数据类型中收集可靠的信息。另一方面,最近的技术发展导致了许多应用领域的高维和复杂数据,这可能无法通过传统技术进行分析。功能数据分析是分析此类复杂数据集的最常用技术之一。尽管可以使用许多传统统计技术的功能扩展,但间隔值数据的功能形式尚未得到很好的研究。本文介绍了一些众所周知的回归模型的功能形式,这些模型采用了间隔值数据。所提出的方法基于功能在功能上的回归模型,其中响应和预测因子均功能性。通过几个蒙特卡洛模拟和经验数据分析,评估了所提出方法的有限样本性能,并将其与最先进的方法进行比较。

Aggregation of large databases in a specific format is a frequently used process to make the data easily manageable. Interval-valued data is one of the data types that is generated by such an aggregation process. Using traditional methods to analyze interval-valued data results in loss of information, and thus, several interval-valued data models have been proposed to gather reliable information from such data types. On the other hand, recent technological developments have led to high dimensional and complex data in many application areas, which may not be analyzed by traditional techniques. Functional data analysis is one of the most commonly used techniques to analyze such complex datasets. While the functional extensions of much traditional statistical techniques are available, the functional form of the interval-valued data has not been studied well. This paper introduces the functional forms of some well-known regression models that take interval-valued data. The proposed methods are based on the function-on-function regression model, where both the response and predictor/s are functional. Through several Monte Carlo simulations and empirical data analysis, the finite sample performance of the proposed methods is evaluated and compared with the state-of-the-art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源