论文标题

两个完全共同地图的应用

Some applications of two completely copositive maps

论文作者

Li, Yongtao, Huang, Yang, Feng, Lihua, Liu, Weijun

论文摘要

线性地图$φ:\ mathbb {m} _n \ to \ mathbb {m} _k $,如果结果矩阵$ [φ(a_ {j,i})_ {i,j = 1}^m $对于任何inte inteeger $ $ m m $ m m $ m $ m $ m $ m $ m $,则称为完全共配。 $ [a_ {i,j}] _ {i,j = 1}^m $。在本文中,我们介绍了完全共同的映射$φ(x)=(\ mathrm {tr} x)i+x $和$ψ(x)=(\ mathrm {tr} x)i-x $。一些关于痕迹的痕迹不平等的新扩展包括$ 3 \ times 3 $块矩阵。

A linear map $Φ:\mathbb{M}_n \to \mathbb{M}_k$ is called completely copositive if the resulting matrix $[Φ(A_{j,i})]_{i,j=1}^m$ is positive semidefinite for any integer $m$ and positive semidefinite matrix $[A_{i,j}]_{i,j=1}^m$. In this paper, we present some applications of the completely copositive maps $Φ(X)=(\mathrm{tr} X)I+X$ and $Ψ(X)= (\mathrm{tr} X)I-X$. Some new extensions about traces inequalities of positive semidefinite $3\times 3$ block matrices are included.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源