论文标题

本地信息隐私及其应用于隐私数据汇总

Local Information Privacy and Its Application to Privacy-Preserving Data Aggregation

论文作者

Jiang, Bo, Li, Ming, Tandon, Ravi

论文摘要

在本文中,我们研究了本地信息隐私(LIP)和设计基于LIP的统计汇总机制,同时保护用户的隐私而无需依赖可信赖的第三方。上下文意识的概念纳入了唇部,可以看作是对对手背景知识的明确建模。它可以设计利用先前分布的隐私机制的设计,该机制可能比当地差异隐私(LDP)等无上下文概念实现了更好的公用事业权利权衡。我们提出了一个优化框架,以最大程度地减少数据聚合中的均方误差,同时保护每个用户的输入数据的隐私或相关的潜在变量,同时满足唇部约束。然后,我们研究了两种不同类型的应用程序:(加权)求和和直方图估计,并根据机制的随机响应类型来得出每种情况的最佳上下文感知数据扰动参数。我们进一步比较了LIP和LDP之间的公用事业私人关系权衡,并理论上解释了为什么合并先验知识扩大了扰动参数的可行区域,从而导致了更高的效用。当没有确切的先验知识不可用时,我们还将基于LIP的隐私机制扩展到更一般的情况。最后,我们通过使用合成和现实世界数据的模拟来验证我们的分析。结果表明,我们基于口头的隐私机制提供了比LDP更好的公用事业私人关系权衡,而当先前的分布更加偏斜时,唇部的优势更加重要。

In this paper, we study local information privacy (LIP), and design LIP based mechanisms for statistical aggregation while protecting users' privacy without relying on a trusted third party. The notion of context-awareness is incorporated in LIP, which can be viewed as explicit modeling of the adversary's background knowledge. It enables the design of privacy-preserving mechanisms leveraging the prior distribution, which can potentially achieve a better utility-privacy tradeoff than context-free notions such as Local Differential Privacy (LDP). We present an optimization framework to minimize the mean square error in the data aggregation while protecting the privacy of each individual user's input data or a correlated latent variable while satisfying LIP constraints. Then, we study two different types of applications: (weighted) summation and histogram estimation and derive the optimal context-aware data perturbation parameters for each case, based on randomized response type of mechanism. We further compare the utility-privacy tradeoff between LIP and LDP and theoretically explain why the incorporation of prior knowledge enlarges feasible regions of the perturbation parameters, which thereby leads to higher utility. We also extend the LIP-based privacy mechanisms to the more general case when exact prior knowledge is not available. Finally, we validate our analysis by simulations using both synthetic and real-world data. Results show that our LIP-based privacy mechanism provides better utility-privacy tradeoffs than LDP, and the advantage of LIP is even more significant when the prior distribution is more skewed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源