论文标题

量化哈密顿系统的代数不对称

Quantifying Algebraic Asymmetry of Hamiltonian Systems

论文作者

Qin, Hui-Hui, Fei, Shao-Ming, Sun, Chang-Pu

论文摘要

对称性在物理系统中起着重要作用。我们通过研究哈密顿量相对于某些代数的不对称性来研究哈密顿系统的对称性。我们定义了操作员在代数基础上的换向器方面的不对称性。对Lie代数$ \ MATHFRAK {SU}(2)$及其$ Q $ defformation进行了详细分析。计算了$ q $ $ q $的不对称性集成旋转链模型。提出了相对于不对称的相应几何图片。

The symmetries play important roles in physical systems. We study the symmetries of a Hamiltonian system by investigating the asymmetry of the Hamiltonian with respect to certain algebras. We define the asymmetry of an operator with respect to an algebraic basis in terms of their commutators. Detailed analysis is given to the Lie algebra $\mathfrak{su}(2)$ and its $q$-deformation. The asymmetry of the $q$-deformed integrable spin chain models is calculated. The corresponding geometrical pictures with respect to such asymmetry is presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源