论文标题

LP空间上的等距动作:依赖于P的值

Isometric actions on Lp-spaces: dependence on the value of p

论文作者

Marrakchi, Amine, de la Salle, Mikael

论文摘要

Answering a question by Chatterji--Druţu--Haglund, we prove that, for every locally compact group $G$, there exists a critical constant $p_G \in [0,\infty]$ such that $G$ admits a continuous affine isometric action on an $L_p$ space ($0<p<\infty$) with unbounded orbits if and only if $p \geq p_G$.在$ L_P $空间上存在适当的连续仿射等距动作也有类似的结果。使用谐波共同体的共同学表示,我们还表明,当线性部分来自保留措施的行动,或者更通常是对von Neumann代数和$ p> 2 $的措施保护行动时,就不会出现这种无限的轨道。我们还证明,在$ l_p $衡量等价的下,这个关键常数$ p_g $的稳定性,回答了一个费舍尔的问题。我们用它来表明,对于每个连接的半胶结谎言组$ g $,对于每个晶格$γ<g $,我们都有$p_γ= p_g $。

Answering a question by Chatterji--Druţu--Haglund, we prove that, for every locally compact group $G$, there exists a critical constant $p_G \in [0,\infty]$ such that $G$ admits a continuous affine isometric action on an $L_p$ space ($0<p<\infty$) with unbounded orbits if and only if $p \geq p_G$. A similar result holds for the existence of proper continuous affine isometric actions on $L_p$ spaces. Using a representation of cohomology by harmonic cocycles, we also show that such unbounded orbits cannot occure when the linear part comes from a measure preserving action, or more generally a state-preserving action on a von Neumann algebra and $p>2$. We also prove the stability of this critical constant $p_G$ under $L_p$ measure equivalence, answering a question of Fisher. We use this to show that for every connected semisimple Lie group $G$ and for every lattice $Γ< G$, we have $p_Γ=p_G$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源