论文标题

Cauchy-Maxwell方程:耦合电磁和弹性的统一田间理论

Cauchy-Maxwell equations: A unified field theory for coupled electromagnetism and elasticity

论文作者

Roy, Pranesh, Kumar, Sanjeev, Roy, Debasish

论文摘要

共形规论用于描述和统一在固体连续体中观察到的无数机电和磁力学耦合效应。我们在有限的信息设置中使用时空伪里曼尼亚式指标,并利用拉格朗日的局部形式对称性对称性,我们得出了Cauchy-Maxwell(CM)方程,该方程式第一次与Cauchy的Elasto-Dynamic方程无缝地结合了Maxwell的ElectealMagagnetismiss。麦克斯韦的真空方程可从我们的模型中恢复,这本身也构成了这些方程式的新推导。随着变形梯度和材料速度耦合在拉格朗日密度中,欧拉 - 拉格朗日方程中出现了各种伪孔。这些力在特定的几何或加载条件下可能具有不可识别的通过经典连续性力学,可能具有显着性。作为CM方程如何工作的有限例证,我们进行了半分析研究,即。在无限变形和横向负荷下,在无限的身体上,考虑压电和压电。我们的结果表明,在特定的负载频率和张力下,膜的某些区域可能会迅速增加。这在未来的有效能源收集研究中可能具有重要意义。

A conformal gauge theory is used to describe and unify myriad electromechanical and magnetomechanical coupling effects observed in solid continua. Using a space-time pseudo-Riemannian metric in a finite-deformation setup and exploiting the local conformal symmetry of the Lagrangian, we derive Cauchy-Maxwell (CM) equations that seamlessly combine, for the first time, Cauchy's elasto-dynamic equations with Maxwell's equations for electromagnetism. Maxwell's equations for vacuum are recoverable from our model, which in itself also constitutes a new derivation of these equations. With deformation gradient and material velocity coupled in the Lagrange density, various pseudo-forces appear in the Euler-Lagrange equations. These forces, not identifiable through classical continuum mechanics, may have significance under specific geometric or loading conditions. As a limited illustration on how the CM equations work, we carry out semi-analytical studies, viz. on an infinite body subject to isochoric deformation and a finite membrane under both tensile and transverse loading, considering piezoelectricity and piezomagnetism. Our results show that under specific loading frequencies and tension, electric and magnetic potentials may increase rapidly in some regions of the membrane. This may have significance in future studies on efficient energy harvesting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源