论文标题

体积的下限,在维度为3

Lower Bounds for the Volume with Upper Bounds for the Ricci Curvature in Dimension Three

论文作者

Gimeno, Vicent

论文摘要

在本说明中,我们为在$ 3 $维的Riemannian歧管中提供了几个下界,用于在注射率半径内的大地球的体积,假设RICCI曲率仅上限。

In this note we provide several lower bounds for the volume of a geodesic ball within the injectivity radius in a $3$-dimensional Riemannian manifold assuming only upper bounds for the Ricci curvature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源