论文标题
体积的下限,在维度为3
Lower Bounds for the Volume with Upper Bounds for the Ricci Curvature in Dimension Three
论文作者
论文摘要
在本说明中,我们为在$ 3 $维的Riemannian歧管中提供了几个下界,用于在注射率半径内的大地球的体积,假设RICCI曲率仅上限。
In this note we provide several lower bounds for the volume of a geodesic ball within the injectivity radius in a $3$-dimensional Riemannian manifold assuming only upper bounds for the Ricci curvature.