论文标题

子空间分割的组规范正规化分解模型

A Group Norm Regularized Factorization Model for Subspace Segmentation

论文作者

Wang, Xishun, Yang, Zhouwang, Yue, Xingye, Wang, Hui

论文摘要

子空间分割假定数据来自不同子空间的联合,而分割的目的是将数据分配到相应的子空间中。低级别表示(LRR)是一种用于解决子空间分割问题的经典光谱型方法,也就是说,首先通过求解LRR模型来获得亲和力矩阵,然后执行频谱群集进行分割。本文提出了一个灵感来自子空间分割的LRR模型,然后设计了一个加速的增强Lagrangian方法(AALM)算法来求解该模型的群体规范正规化模型(GNRFM)。具体而言,我们采用组规范正规化以使因子矩阵稀疏的列,从而达到低级的目的,这意味着不需要单数值分解(SVD),并且每个步骤的计算复杂性大大降低。我们通过使用不同的LRR模型获得亲和力矩阵,然后在不同的合成噪声数据和真实数据上进行集群测试。与传统模型和算法相比,所提出的方法对噪声更快,更强大,因此最终的聚类结果更好。此外,数值结果表明,我们的算法收敛迅速,只需要大约十个迭代。

Subspace segmentation assumes that data comes from the union of different subspaces and the purpose of segmentation is to partition the data into the corresponding subspace. Low-rank representation (LRR) is a classic spectral-type method for solving subspace segmentation problems, that is, one first obtains an affinity matrix by solving a LRR model and then performs spectral clustering for segmentation. This paper proposes a group norm regularized factorization model (GNRFM) inspired by the LRR model for subspace segmentation and then designs an Accelerated Augmented Lagrangian Method (AALM) algorithm to solve this model. Specifically, we adopt group norm regularization to make the columns of the factor matrix sparse, thereby achieving a purpose of low rank, which means no Singular Value Decompositions (SVD) are required and the computational complexity of each step is greatly reduced. We obtain affinity matrices by using different LRR models and then performing cluster testing on different sets of synthetic noisy data and real data, respectively. Compared with traditional models and algorithms, the proposed method is faster and more robust to noise, so the final clustering results are better. Moreover, the numerical results show that our algorithm converges fast and only requires approximately ten iterations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源