论文标题

机器学习使比人类专家更快地完全自动调整量子设备

Machine learning enables completely automatic tuning of a quantum device faster than human experts

论文作者

Moon, H., Lennon, D. T., Kirkpatrick, J., van Esbroeck, N. M., Camenzind, L. C., Yu, Liuqi, Vigneau, F., Zumbühl, D. M., Briggs, G. A. D., Osborne, M. A, Sejdinovic, D., Laird, E. A., Ares, N.

论文摘要

设备可变性是半导体量子设备可扩展性的瓶颈。设备控制增加的是必须探索大型参数空间,以找到最佳的工作条件。我们演示了一种统计调整算法,该算法仅使用几个建模假设在搜索特定的电子传输特征时仅使用几个建模假设导航。我们专注于栅极定义的量子点设备,展示了两种不同设备的全自动调整,以在多达八维的栅极电压空间中双重量子点状态。我们考虑了由这些设备中每个门电压的最大范围定义的参数空间,证明了预期在70分钟内进行的调整。这种表现超出了人类的基准,尽管我们认识到人类和机器的性能都有改善的余地。我们的方法比对参数空间的纯随机搜索快的速度约180倍,并且容易适用于不同的材料系统和设备体系结构。通过有效的门电压空间导航,我们能够对设备可变性进行定量测量,从一个设备到另一个设备以及设备的热周期之后。这是使用机器学习技术来探索和优化量子设备的参数空间并克服设备可变性的挑战的关键。

Device variability is a bottleneck for the scalability of semiconductor quantum devices. Increasing device control comes at the cost of a large parameter space that has to be explored in order to find the optimal operating conditions. We demonstrate a statistical tuning algorithm that navigates this entire parameter space, using just a few modelling assumptions, in the search for specific electron transport features. We focused on gate-defined quantum dot devices, demonstrating fully automated tuning of two different devices to double quantum dot regimes in an up to eight-dimensional gate voltage space. We considered a parameter space defined by the maximum range of each gate voltage in these devices, demonstrating expected tuning in under 70 minutes. This performance exceeded a human benchmark, although we recognise that there is room for improvement in the performance of both humans and machines. Our approach is approximately 180 times faster than a pure random search of the parameter space, and it is readily applicable to different material systems and device architectures. With an efficient navigation of the gate voltage space we are able to give a quantitative measurement of device variability, from one device to another and after a thermal cycle of a device. This is a key demonstration of the use of machine learning techniques to explore and optimise the parameter space of quantum devices and overcome the challenge of device variability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源