论文标题
6G光学无线通信系统中的最佳资源分配
Optimum Resource Allocation in 6G Optical Wireless Communication Systems
论文作者
论文摘要
光学无线通信(OWC)系统是一种有前途的通信技术,可以为TB/S提供高数据速率,并可以同时支持多个用户。本文调查了波长部门多访问(WDMA)OWC系统中资源的最佳分配,以支持多个用户。开发了混合组合线性编程(MILP)模型,以优化资源分配。检查了两种类型的接收器,一个角度多样性接收器(ADR)和成像接收器(IMR)。 IMR可以为每个用户提供高达14 Gbps的高数据速率,并具有更高的信号与干扰和噪声比(SINR)。与通道带宽,SINR和数据速率的ADR相比,IMR接收器提供了更好的结果。鉴于光的高方向性质,可以利用空间维度来实现多个,空间分离,链接的共存,从而使数据速率汇总到TB/s中。我们考虑了一个可见的光通信(VLC)设置,每个访问点四个波长(红色,绿色,黄色和蓝色)。在红外光谱中,存在可以支持多达100个波长的商业来源,从而大大增加了系统的总容量。可以利用其他正交域,以在6G及以后的这些未来系统中提高能力更高的能力
Optical wireless communication (OWC) systems are a promising communication technology that can provide high data rates into the tens of Tb/s and can support multiple users at the same time. This paper investigates the optimum allocation of resources in wavelength division multiple access (WDMA) OWC systems to support multiple users. A mixed-integer linear programming (MILP) model is developed to optimise the resource allocation. Two types of receivers are examined, an angle diversity receiver (ADR) and an imaging receiver (ImR). The ImR can support high data rates up to 14 Gbps for each user with a higher signal to interference and noise ratio (SINR). The ImR receiver provides a better result compared to the ADR in term of channel bandwidth, SINR and data rate. Given the highly directional nature of light, the space dimension can be exploited to enable the co-existence of multiple, spatially separated, links and thus aggregate data rates into the Tb/s. We have considered a visible light communication (VLC) setting with four wavelengths per access point (red, green, yellow and blue). In the infrared spectrum, commercial sources exist that can support up to 100 wavelengths, significantly increasing the system aggregate capacity. Other orthogonal domains can be exploited to lead to higher capacities in these future systems in 6G and beyond