论文标题
量子点电发光中的解密激子产生过程
Deciphering exciton-generation processes in quantum-dot electroluminescence
论文作者
论文摘要
胶体纳米晶体的电致发光(EL)有望新一代新一代的高性能和可加工的光发射二极管(LED)。基于纳米晶体的LED的运行依赖于电产生的激子的重组。但是,一个基本问题,即激发子在单个纳米晶体中的电力产生如何仍未得到答复。在这里,我们揭示了基于纳米晶体的EL设备中激子产生的顺序电子孔注射的分子机制。为了破译相应的基本过程,我们开发了电泵的单纳米晶光谱。通常认为将孔注射到中性量子点(QD)效率低下,但我们发现QD触发器限制增强的库仑相互作用的中间负荷状态同时加速了孔注射并阻碍了过度的电子损伤。最先进的QD-LED上的原位/操作光谱表明,集合水平的激子产生与启用的电荷顺序电子孔注射机制一致,该机制在单纳米晶水平上揭示了。我们的发现提供了一种通用机制,可增强基于纳米晶体的EL设备的电荷平衡。
Electroluminescence (EL) of colloidal nanocrystals promises a new generation of high-performance and solution-processable light-emitting diodes (LEDs). The operation of nanocrystal-based LEDs relies on the recombination of electrically-generated excitons. However, a fundamental question, i.e, how excitons are electrically generated in individual nanocrystals, remains unanswered. Here, we reveal a molecular mechanism of sequential electron-hole injection for the exciton generation in nanocrystal-based EL devices. To decipher the corresponding elementary processes, we develop electrically-pumped single-nanocrystal spectroscopy. While hole injection into neutral quantum dots (QDs) is generally-considered to be inefficient, we find that the intermediate negatively-charged state of QD triggers confinement-enhanced Coulomb interactions, which simultaneously accelerate hole injection and hinder excessive electron injection. In-situ/operando spectroscopy on state-of-the-art QD-LEDs demonstrate that exciton generation at the ensemble level is consistent with the charge-confinement-enabled sequential electron-hole injection mechanism revealed at the single-nanocrystal level. Our findings provide a universal mechanism for enhancing charge balance in nanocrystal-based EL devices.