论文标题
学习里程碑式的指导嵌入动物重新识别
Learning landmark guided embeddings for animal re-identification
论文作者
论文摘要
由于不同个体之间的身体标记的细微差异,并且对野生动物的姿势没有限制,因此在图像中重新识别单个动物可能是模棱两可的。人重新识别是一项类似的任务,它已经与深度卷积神经网络(CNN)接触,该网络(CNN)学习了人物图像的歧视性嵌入。但是,与人的身份数据集相比,由于生态数据集的规模相对较小,因此学习单个动物的判别特征比一个人的外表更具挑战性。我们建议通过明确利用身体地标信息来改善嵌入学习。将CNN的输入提供给人体地标作为置信热图,可以从单独的车身地标预测器获得。鼓励该模型通过学习重建输入热图的辅助任务来使用热图。身体地标指导特征提取网络,以了解独特模式及其在身体上的位置的表示。我们在大型合成数据集和一个小的实际数据集上评估了所提出的方法。我们的方法在合成数据集和实际数据集上分别优于没有车身地标输入的没有车身地标的模型的同一模型。该方法在输入坐标中对噪声是鲁棒的,并且可以忍受坐标中的误差,最多可达图像大小的10%。
Re-identification of individual animals in images can be ambiguous due to subtle variations in body markings between different individuals and no constraints on the poses of animals in the wild. Person re-identification is a similar task and it has been approached with a deep convolutional neural network (CNN) that learns discriminative embeddings for images of people. However, learning discriminative features for an individual animal is more challenging than for a person's appearance due to the relatively small size of ecological datasets compared to labelled datasets of person's identities. We propose to improve embedding learning by exploiting body landmarks information explicitly. Body landmarks are provided to the input of a CNN as confidence heatmaps that can be obtained from a separate body landmark predictor. The model is encouraged to use heatmaps by learning an auxiliary task of reconstructing input heatmaps. Body landmarks guide a feature extraction network to learn the representation of a distinctive pattern and its position on the body. We evaluate the proposed method on a large synthetic dataset and a small real dataset. Our method outperforms the same model without body landmarks input by 26% and 18% on the synthetic and the real datasets respectively. The method is robust to noise in input coordinates and can tolerate an error in coordinates up to 10% of the image size.