论文标题

通过有条件旋转角度估计的半监督学习

Semi-supervised Learning via Conditional Rotation Angle Estimation

论文作者

Xu, Hai-Ming, Liu, Lingqiao, Gong, Dong

论文摘要

在过去的几年中,自我监督的学习(SLFSL)旨在通过巧妙地设计的借口任务来学习特征表征,并取得了令人信服的进步。最近,SLFSL也被确定为半监督学习(SEMSL)的有前途的解决方案,因为它提供了一种新的范式来利用未标记的数据。这项工作进一步探讨了这一方向,建议将夫妇与SEMSL夫妇夫妇。我们的见解是,可以将SEMSL中的预测目标建模为SLFSL目标预测因子的潜在因素。对潜在因素的边缘化自然得出了一种新的配方,该制定与这两个学习过程的预测目标结合。通过通过简单但有效的SLFSL方法实现此想法 - 旋转角度预测,我们创建了一种新的SEMSL方法,称为条件旋转角度估计(CRAE)。具体而言,通过采用一个模块来预测候选图像类别的图像旋转角度,可以通过一个模块来进行CRAE。通过实验评估,我们表明CRAE比将SLFSL和SEMSL的其他现有方法取得了卓越的性能。为了进一步增强CRAE,我们提出了两种扩展,以加强基本CRAE中SEMSL目标和SLFSL目标之间的耦合。我们表明,这导致了一种改进的CRAE方法,可以实现最先进的SEMSL性能。

Self-supervised learning (SlfSL), aiming at learning feature representations through ingeniously designed pretext tasks without human annotation, has achieved compelling progress in the past few years. Very recently, SlfSL has also been identified as a promising solution for semi-supervised learning (SemSL) since it offers a new paradigm to utilize unlabeled data. This work further explores this direction by proposing to couple SlfSL with SemSL. Our insight is that the prediction target in SemSL can be modeled as the latent factor in the predictor for the SlfSL target. Marginalizing over the latent factor naturally derives a new formulation which marries the prediction targets of these two learning processes. By implementing this idea through a simple-but-effective SlfSL approach -- rotation angle prediction, we create a new SemSL approach called Conditional Rotation Angle Estimation (CRAE). Specifically, CRAE is featured by adopting a module which predicts the image rotation angle conditioned on the candidate image class. Through experimental evaluation, we show that CRAE achieves superior performance over the other existing ways of combining SlfSL and SemSL. To further boost CRAE, we propose two extensions to strengthen the coupling between SemSL target and SlfSL target in basic CRAE. We show that this leads to an improved CRAE method which can achieve the state-of-the-art SemSL performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源