论文标题
节律神经元网络上的动力学分离
Dynamical phase separation on rhythmogenic neuronal networks
论文作者
论文摘要
我们探索Prebötzinger综合体的动力学,Prebötzinger综合体是具有$ n \ sim 10^3 $神经元的哺乳动物中央模式生成器,它产生了一个集体的计量信号,使灵感成为灵感。我们的分析基于具有树突适应的兴奋性神经元的简单触发率模型(Feldman del Negro模型[Nat。Rev.Neurosci。7,232(2006),Phys。Rev.E 2010:051911])在固定的,定向的Erdős-rényi网络上相互作用。在模型的全部耦合变体中,有自发的对称性破裂,其中一部分神经元被卡在高射击率状态下,而其他神经元则变为静止。将这种分离为射击和非射击簇持续到更稀疏的连接网络中,并且部分由有向图中的$ k $ cores确定。该模型具有动态相图的许多特征,这些特征违反了平均场分析的预测。特别是,我们在模拟网络中观察到,与平均场理论的预测相矛盾,稳定的振荡并不持续在大N极限中。此外,我们观察到,这些稀疏网络中的振荡对于杀死神经元的响应非常强大,直到仅剩下约20 \%$的$ \%。这种鲁棒性与实验一致。
We explore the dynamics of the preBötzinger complex, the mammalian central pattern generator with $N \sim 10^3$ neurons, which produces a collective metronomic signal that times the inspiration. Our analysis is based on a simple firing-rate model of excitatory neurons with dendritic adaptation (the Feldman Del Negro model [Nat. Rev. Neurosci. 7, 232 (2006), Phys. Rev. E 2010 :051911]) interacting on a fixed, directed Erdős-Rényi network. In the all-to-all coupled variant of the model, there is spontaneous symmetry breaking in which some fraction of the neurons become stuck in a high firing-rate state, while others become quiescent. This separation into firing and non-firing clusters persists into more sparsely connected networks, and is partially determined by $k$-cores in the directed graphs. The model has a number of features of the dynamical phase diagram that violate the predictions of mean-field analysis. In particular, we observe in the simulated networks that stable oscillations do not persist in the large-N limit, in contradiction to the predictions of mean-field theory. Moreover, we observe that the oscillations in these sparse networks are remarkably robust in response to killing neurons, surviving until only $\approx 20 \%$ of the network remains. This robustness is consistent with experiment.