论文标题
基于总变异正规化稳健低等级张量分解的多通SAR干涉仪
Multipass SAR Interferometry Based on Total Variation Regularized Robust Low Rank Tensor Decomposition
论文作者
论文摘要
基于仪表分辨率Spaceborne SAR卫星(例如Terrasar-X或Cosmo-Akymed)的多通SAR干涉法(INSAR)技术可提供3D重建,并在大型城市地区测量地面位移。诸如持续散射器干涉法(PSI)之类的常规方法通常需要相当大的SAR图像堆栈(通常按TENS的顺序),以实现这些参数的可靠估计。最近,在我们以前的工作中探索和研究了多通Inar Insar数据堆栈中的低级属性。通过利用这一低级先验,可以实现更准确的地球物理参数估计,进而可以有效地减少可靠估计所需的干涉图数量。基于此,本文提出了一种新型的张量分解方法,该方法在INSAR数据堆栈中共同利用干涉阶段的低级和差异先验。具体而言,利用总变化(TV)正规化稳健的低等级分解方法用于恢复无离群的无离线INSAR堆栈。我们证明,过滤后的INS数据堆积可以大大提高根据实际数据估算的地球物理参数的准确性。此外,本文首次在社区中证明了基于张量的分解方法可能对使用多通Inar的大规模城市地图问题有益。两个具有较大空间区域的Terrasar-X数据堆栈证明了该方法的有希望的性能。
Multipass SAR interferometry (InSAR) techniques based on meter-resolution spaceborne SAR satellites, such as TerraSAR-X or COSMO-Skymed, provide 3D reconstruction and the measurement of ground displacement over large urban areas. Conventional method such as Persistent Scatterer Interferometry (PSI) usually requires a fairly large SAR image stack (usually in the order of tens), in order to achieve reliable estimates of these parameters. Recently, low rank property in multipass InSAR data stack was explored and investigated in our previous work. By exploiting this low rank prior, more accurate estimation of the geophysical parameters can be achieved, which in turn can effectively reduce the number of interferograms required for a reliable estimation. Based on that, this paper proposes a novel tensor decomposition method in complex domain, which jointly exploits low rank and variational prior of the interferometric phase in InSAR data stacks. Specifically, a total variation (TV) regularized robust low rank tensor decomposition method is exploited for recovering outlier-free InSAR stacks. We demonstrate that the filtered InSAR data stacks can greatly improve the accuracy of geophysical parameters estimated from real data. Moreover, this paper demonstrates for the first time in the community that tensor-decomposition-based methods can be beneficial for large-scale urban mapping problems using multipass InSAR. Two TerraSAR-X data stacks with large spatial areas demonstrate the promising performance of the proposed method.