论文标题
传感器附加移动C臂的枢轴校准概念
Pivot calibration concept for sensor attached mobile c-arms
论文作者
论文摘要
数十年来,已经对医学增强现实进行了积极的研究,并提出了许多方法将临床程序化。一个示例是相机增强的移动C臂(CAMC),它通过将摄像机安装和校准到ImagingDevice来提供实时视频增强到医疗图像上。从那时起,通过校准2D/3D摄像机,跟踪器和More Microsoft Hololens校准C-ARM的CAMC变化。已经应用了不同的校准方法来建立刚性连接的传感器和成像装置之间的对应关系。这些方法的关键步骤是获取X射线图像或3D重建量的;因此,需要排放电离。在这项工作中,我们分析了设备的机械运动,并提出了一种替代方法,可以将传感器校准到C型臂,而不会发出任何辐射。给定一个传感器牢固地连接到Thedevice,我们引入了一个扩展的枢轴校准概念,以计算传感器Tothe c-arm旋转中心的固定翻译。传感器和旋转中心之间的固定关系可以作为对位点上移动的枢轴点的概括校准问题。我们的方法利用了刚性的C臂运动描述圆环表面以解决此校准问题。我们解释了C臂运动和与附着的传感器的关系的几何形状,提出了一种校准算法,并显示出对噪声的稳健性,以及通过计算机模拟观察到的姿势密度。我们讨论了这种基于几何的配方及其对不同C臂应用的潜在扩展。
Medical augmented reality has been actively studied for decades and many methods have been proposed torevolutionize clinical procedures. One example is the camera augmented mobile C-arm (CAMC), which providesa real-time video augmentation onto medical images by rigidly mounting and calibrating a camera to the imagingdevice. Since then, several CAMC variations have been suggested by calibrating 2D/3D cameras, trackers, andmore recently a Microsoft HoloLens to the C-arm. Different calibration methods have been applied to establishthe correspondence between the rigidly attached sensor and the imaging device. A crucial step for these methodsis the acquisition of X-Ray images or 3D reconstruction volumes; therefore, requiring the emission of ionizingradiation. In this work, we analyze the mechanical motion of the device and propose an alternatative methodto calibrate sensors to the C-arm without emitting any radiation. Given a sensor is rigidly attached to thedevice, we introduce an extended pivot calibration concept to compute the fixed translation from the sensor tothe C-arm rotation center. The fixed relationship between the sensor and rotation center can be formulated as apivot calibration problem with the pivot point moving on a locus. Our method exploits the rigid C-arm motiondescribing a Torus surface to solve this calibration problem. We explain the geometry of the C-arm motion andits relation to the attached sensor, propose a calibration algorithm and show its robustness against noise, as wellas trajectory and observed pose density by computer simulations. We discuss this geometric-based formulationand its potential extensions to different C-arm applications.