论文标题
耦合量子系统中的纠缠和限制
Entanglement and Confinement in Coupled Quantum Systems
论文作者
论文摘要
我们研究耦合量子系统的一些一般特性。我们考虑在两个相同的哈密顿量副本(例如Syk模型)之间的简单相互作用,带有随机磁场和谐波振荡器的Pauli旋转链。这样的耦合使地面状态靠近未偶联的汉密尔顿人的热菲尔德双状态。对于耦合的SYK模型,我们将数值计算进一步推向热力学极限,以便可以推断系统的大小。我们发现在大$ q $限制中,推断的数值结果与分析结果之间的一致性很好。我们还考虑了耦合的测量矩阵模型和矢量模型,并认为解元与纠缠的丢失相关,类似于对耦合SYK模型的先前观察结果。对限制/解解式过渡的微观机制的理解使我们能够精确地估算量子纠缠,并支持将解元与蠕虫孔消失相关的双重重力解释。我们的结果表明,通过全息图从量子场理论出现的自由度颜色程度之间纠缠的重要性。
We study some general properties of coupled quantum systems. We consider simple interactions between two copies of identical Hamiltonians such as the SYK model, Pauli spin chains with random magnetic field and harmonic oscillators. Such couplings make the ground states close to the thermofield double states of the uncoupled Hamiltonians. For the coupled SYK model, we push the numerical computation further towards the thermodynamic limit so that an extrapolation in the size of the system is possible. We find good agreement between the extrapolated numerical result and the analytic result in the large-$q$ limit. We also consider the coupled gauged matrix model and vector model, and argue that the deconfinement is associated with the loss of the entanglement, similarly to the previous observation for the coupled SYK model. The understanding of the microscopic mechanism of the confinement/deconfinement transition enables us to estimate the quantum entanglement precisely, and backs up the dual gravity interpretation which relates the deconfinement to the disappearance of the wormhole. Our results demonstrate the importance of the entanglement between the color degrees of freedom in the emergence of the bulk geometry from quantum field theory via holography.