论文标题

在有限场上具有固定多项式的欧几里得算法的平均案例复杂性

Average-case complexity of the Euclidean algorithm with a fixed polynomial over a finite field

论文作者

Giménez, Nardo, Matera, Guillermo, Pérez, Mariana, Privitelli, Melina

论文摘要

我们分析了在固定最高的多项式G时,分析了在有限的Q元素上,将单变量非恒定多项式的欧几里得算法(g,f)施加在有限的Q元素上。考虑到固定度的所有元素F,我们就Q的数量F量渐近地建立了Q渐近最佳的界限,而元素f的数量与G相对较高,并且对于GCD的平均程度(G,F)。实际实验证实了我们估计的准确性。我们还表现出渐近的最佳界限,对于上面应用于对(G,F)的欧几里得算法的平均案例复杂性。

We analyze the behavior of the Euclidean algorithm applied to pairs (g,f) of univariate nonconstant polynomials over a finite field F_q of q elements when the highest-degree polynomial g is fixed. Considering all the elements f of fixed degree, we establish asymptotically optimal bounds in terms of q for the number of elements f which are relatively prime with g and for the average degree of gcd(g,f). The accuracy of our estimates is confirmed by practical experiments. We also exhibit asymptotically optimal bounds for the average-case complexity of the Euclidean algorithm applied to pairs (g,f) as above.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源