论文标题
估计功能的经验偏差调整
Empirical bias-reducing adjustments to estimating functions
论文作者
论文摘要
我们开发了一个新颖的一般框架,用于减少渐近公正估计功能的偏见$ m $估计。该框架依赖于偏差的经验近似,这是估计功能贡献的衍生物的函数。减少偏见$ m $估计可以通过从原始$ m $估计中减去估计的偏差来求解经验调整的估计方程,或明确地求解,并适用于部分或完全指定的模型,并具有一些可能性或其他替代物目标。自动差异可以用来抽象实施减少偏置$ m $估计所需的唯一代数。结果,与其他确定的偏差减少方法相比,我们介绍的偏差减少方法具有更广泛的适用性,并且更直接地实施,并且代数或计算工作更少,这些方法需要重新采样或评估对数字衍生物的产物的期望。如果$ m $估计是通过最大化目标,那么始终存在一个偏见的惩罚目标。该惩罚目标与模型选择的信息标准紧密相关,并且可以通过插件罚款进一步增强,以提供具有额外属性的降低偏差$ m $估计,例如用于分类数据的模型中的有限性。降低的偏置$ m $估计器具有与原始$ m $估计器相同的渐近分布,因此,推理和模型选择的标准程序适用于改进的估计值。我们证明并评估了较低的偏置$ m $估算的属性,以不同复杂性的良好,突出的建模设置。
We develop a novel and general framework for reduced-bias $M$-estimation from asymptotically unbiased estimating functions. The framework relies on an empirical approximation of the bias by a function of derivatives of estimating function contributions. Reduced-bias $M$-estimation operates either implicitly, by solving empirically-adjusted estimating equations, or explicitly, by subtracting the estimated bias from the original $M$-estimates, and applies to models that are partially- or fully-specified, with either likelihoods or other surrogate objectives. Automatic differentiation can be used to abstract away the only algebra required to implement reduced-bias $M$-estimation. As a result, the bias reduction methods we introduce have markedly broader applicability with more straightforward implementation and less algebraic or computational effort than other established bias-reduction methods that require resampling or evaluation of expectations of products of log-likelihood derivatives. If $M$-estimation is by maximizing an objective, then there always exists a bias-reducing penalized objective. That penalized objective relates closely to information criteria for model selection, and can be further enhanced with plug-in penalties to deliver reduced-bias $M$-estimates with extra properties, like finiteness in models for categorical data. The reduced-bias $M$-estimators have the same asymptotic distribution as the original $M$-estimators, and, hence, standard procedures for inference and model selection apply unaltered with the improved estimates. We demonstrate and assess the properties of reduced-bias $M$-estimation in well-used, prominent modelling settings of varying complexity.