论文标题

弥合AI和医疗保健方面之间的差距:朝着开发临床相关的AI诊断系统

Bridging the gap between AI and Healthcare sides: towards developing clinically relevant AI-powered diagnosis systems

论文作者

Han, Changhee, Rundo, Leonardo, Murao, Kohei, Nemoto, Takafumi, Nakayama, Hideki

论文摘要

尽管基于卷积神经网络的计算机辅助诊断研究取得了成功,但其临床应用仍然具有挑战性。因此,开发适合临床环境的医疗人工智能(AI)需要确定/弥合AI和医疗保健方面的差距。由于医学成像的最大问题在于数据匮乏,因此确认诊断研究预处理图像增强技术的临床相关性至关重要。因此,我们在日本医学成像专家,医生和医疗保健/信息学的通才中举办了临床上有价值的AI涉及研讨会。然后,针对医师的问卷调查评估了我们的病理学生成对抗网络(GAN)基于数据增强和医师培训的图像增强项目。该研讨会揭示了AI/医疗保健方面的内在差距以及解决原因(即临床意义/解释)以及如何(即数据获取,商业部署以及安全/感觉安全)的解决方案。该分析证实了我们的病理学意识到GAN作为临床决策支持系统和非专家医师培训工具的临床意义。我们的发现将在连接跨学科研究和临床应用中发挥关键作用,而不仅限于日本医学环境和病理学的gan。

Despite the success of Convolutional Neural Network-based Computer-Aided Diagnosis research, its clinical applications remain challenging. Accordingly, developing medical Artificial Intelligence (AI) fitting into a clinical environment requires identifying/bridging the gap between AI and Healthcare sides. Since the biggest problem in Medical Imaging lies in data paucity, confirming the clinical relevance for diagnosis of research-proven image augmentation techniques is essential. Therefore, we hold a clinically valuable AI-envisioning workshop among Japanese Medical Imaging experts, physicians, and generalists in Healthcare/Informatics. Then, a questionnaire survey for physicians evaluates our pathology-aware Generative Adversarial Network (GAN)-based image augmentation projects in terms of Data Augmentation and physician training. The workshop reveals the intrinsic gap between AI/Healthcare sides and solutions on Why (i.e., clinical significance/interpretation) and How (i.e., data acquisition, commercial deployment, and safety/feeling safe). This analysis confirms our pathology-aware GANs' clinical relevance as a clinical decision support system and non-expert physician training tool. Our findings would play a key role in connecting inter-disciplinary research and clinical applications, not limited to the Japanese medical context and pathology-aware GANs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源