论文标题

Lorentz-Sobolev空间中的Sobolev型不平等现象

The sharp Sobolev type inequalities in the Lorentz--Sobolev spaces in the hyperbolic spaces

论文作者

Nguyen, Van Hoang

论文摘要

令$ w^1l^{p,q}(\ mathbb h^n)$,$ 1 \ leq q,p <\ infty $表示lorentz-sobolev spaces of Order One的lorentz-sobolev空间$ \ mathbb h^n $。我们在本文中的目标是三个方面。首先,我们用$ w^1l^{p,q}(\ Mathbb h^n)$建立了一个尖锐的庞加莱不平等,并用$ 1 \ leq q \ leq p $ p $,在\ cite {ngonguyenamv}中概括到lorentz-sobolev空间的设置中。其次,我们在$ W^1l^{p,q}中证明了几种尖锐的Poincaré-Sobolev类型不等式(\ Mathbb H^n)$,$ 1 \ leq Q \ leq Q \ leq P <n $将结果推广到\ cite {nguyenps2018}中,以{nguyenps2018}到Lorentz-sobolev Space的设置。最后,我们将改进的Moser-Trudinger类型不平等为$ W^1l^{n,q}(\ Mathbb {h}^n $中的$ p = n $,$ 1 \ leq q \ leq n $在\ cite \ cite {nguyenmt2018}中概括,并改善了结果{y \ C.为了证明主要结果,我们将在$ w^1 l^{p,q}中证明pólya-szegö类型原理(\ mathbb h^n)$,$ 1 \ leq q \ leq q \ leq p $,这可能是独立的。

Let $W^1L^{p,q}(\mathbb H^n)$, $1\leq q,p < \infty$ denote the Lorentz-Sobolev spaces of order one in the hyperbolic spaces $\mathbb H^n$. Our aim in this paper is three-fold. First of all, we establish a sharp Poincaré inequality in $W^1L^{p,q}(\mathbb H^n)$ with $1\leq q \leq p$ which generalizes the result in \cite{NgoNguyenAMV} to the setting of Lorentz-Sobolev spaces. Second, we prove several sharp Poincaré-Sobolev type inequalities in $W^1L^{p,q}(\mathbb H^n)$ with $1\leq q \leq p < n$ which generalize the results in \cite{NguyenPS2018} to the setting of Lorentz-Sobolev spaces. Finally, we provide the improved Moser-Trudinger type inequalities in $W^1L^{n,q}(\mathbb{H}^n)$ in the critical case $p= n$ with $1\leq q \leq n$ which generalize the results in \cite{NguyenMT2018} and improve the results in \cite{YangLi2019}. In the proof of the main results, we shall prove a Pólya--Szegö type principle in $W^1 L^{p,q}(\mathbb H^n)$ with $1\leq q \leq p$ which maybe is of independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源