论文标题
交换性简单束
Commutative simplicial bundles
论文作者
论文摘要
在本文中,我们介绍了具有通勤性结构的主要捆绑包及其针对拓扑组定义的分类空间的简单类似物。我们的构建$ \叠加w(τ,k)$是$ \叠加的w $ - 构造的变体。我们表明,我们的$ \叠加w(τ,k)$的几何实现与拓扑分类空间$ b(τ,| k |)$相当,我们研究什么对象可以使用简单的selecial set $ \叠加$ \叠加w(τ,k)$分类。
In this paper we introduce a simplicial analogue of principal bundles with commutativity structure and their classifying spaces defined for topological groups. Our construction $\overline W(τ,K)$ is a variation of the $\overline W$-construction for simplicial groups. We show that the geometric realization of our $\overline W(τ,K)$ is homotopy equivalent to the topological classifying space $B(τ,|K|)$ and we study what objects does the simplicial set $\overline W(τ,K)$ classify.