论文标题

通过汇总的Uber数据估算街道级别的旅行时间

Street-level Travel-time Estimation via Aggregated Uber Data

论文作者

Maass, Kelsey, Sathanur, Arun V, Khan, Arif, Rallo, Robert

论文摘要

估计城市环境中道路细分市场的旅行时间的时间模式对交通工程师和城市规划师至关重要。在这项工作中,我们提出了一种方法,以利用粗粒和汇总的旅行时间数据来估算给定大都市地区的街道级别旅行时间。我们的主要重点是估计相关数据通常不可用的动脉路段的旅行时间。我们方法的核心思想是利用具有广泛空间覆盖的易于访问,汇总的数据集,例如Uber运动发布的数据,因为Uber运动发布的数据是其他昂贵,细粒度数据集的结构,例如环路计数器和探针数据,可以被覆盖。我们提出的方法使用了道路网络的图表表示,并结合了几种技术,例如基于图的路由,跳闸采样,图形稀疏和最小二乘优化,以估算街道级别的旅行时间。使用采样旅行和加权最短路径路由,我们迭代求解了最小二乘问题以获得旅行时间估计。我们在洛杉矶大都会区街网络上演示了我们的方法,该网络汇总的旅行时间数据可用于交通分析区之间的旅行。此外,我们提出了通过新的图形伪符合技术来扩展方法的技术。

Estimating temporal patterns in travel times along road segments in urban settings is of central importance to traffic engineers and city planners. In this work, we propose a methodology to leverage coarse-grained and aggregated travel time data to estimate the street-level travel times of a given metropolitan area. Our main focus is to estimate travel times along the arterial road segments where relevant data are often unavailable. The central idea of our approach is to leverage easy-to-obtain, aggregated data sets with broad spatial coverage, such as the data published by Uber Movement, as the fabric over which other expensive, fine-grained datasets, such as loop counter and probe data, can be overlaid. Our proposed methodology uses a graph representation of the road network and combines several techniques such as graph-based routing, trip sampling, graph sparsification, and least-squares optimization to estimate the street-level travel times. Using sampled trips and weighted shortest-path routing, we iteratively solve constrained least-squares problems to obtain the travel time estimates. We demonstrate our method on the Los Angeles metropolitan-area street network, where aggregated travel time data is available for trips between traffic analysis zones. Additionally, we present techniques to scale our approach via a novel graph pseudo-sparsification technique.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源