论文标题

关于多人纳什均衡的决策问题的计算复杂性

On the Computational Complexity of Decision Problems about Multi-Player Nash Equilibria

论文作者

Berthelsen, Marie Louisa Tølbøll, Hansen, Kristoffer Arnsfelt

论文摘要

我们研究了$ M $ - 玩家游戏中有关NASH Equilibria的决策问题的计算复杂性。最近已经证明,几个这样的问题在计算上等同于真实存在理论的决策问题,或者在复杂性类别中所述,$ \ chatists \ mathbb {r} $ - 完整时,$ m \ geq 3 $。我们表明,除非它们变成微不足道的问题,否则它们是$ \的\ mathbb {r} $ - 即使对于3-玩家零和游戏,也很难。 我们还获得了有关其他一些决策问题的新结果。我们表明,当$ m \ geq 3 $确定游戏是否具有帕累托最佳纳什平衡的问题或确定游戏是否具有强大的nash均衡为$ \ comests \ mathbb {r} $ - 完成。后者的结果纠正了先前关于文献中NP完整性的主张。我们表明,确定游戏是否具有非理性的NASH平衡是$ \的\ Mathbb {r} $ - 很难回答Bilò和Mavronicolas的问题,并且还解决了确定游戏是否具有合理的NASH平衡的计算复杂性。这些结果也适用于3播放器零和游戏。 我们的证明方法也适用于在对称游戏中有关对称纳什均衡的相应决策问题,尤其是我们的新结果持续到对称环境。最终,我们证明,确定对称$ M $ $ - 玩家游戏是否具有非对称的NASH平衡是$ \的\ Mathbb {r} $ - 当$ M \ GEQ 3 $时,请回答Garg,Mehta,Vazirani和Yazdanbod的问题。

We study the computational complexity of decision problems about Nash equilibria in $m$-player games. Several such problems have recently been shown to be computationally equivalent to the decision problem for the existential theory of the reals, or stated in terms of complexity classes, $\exists\mathbb{R}$-complete, when $m\geq 3$. We show that, unless they turn into trivial problems, they are $\exists\mathbb{R}$-hard even for 3-player zero-sum games. We also obtain new results about several other decision problems. We show that when $m\geq 3$ the problems of deciding if a game has a Pareto optimal Nash equilibrium or deciding if a game has a strong Nash equilibrium are $\exists\mathbb{R}$-complete. The latter result rectifies a previous claim of NP-completeness in the literature. We show that deciding if a game has an irrational valued Nash equilibrium is $\exists\mathbb{R}$-hard, answering a question of Bilò and Mavronicolas, and address also the computational complexity of deciding if a game has a rational valued Nash equilibrium. These results also hold for 3-player zero-sum games. Our proof methodology applies to corresponding decision problems about symmetric Nash equilibria in symmetric games as well, and in particular our new results carry over to the symmetric setting. Finally we show that deciding whether a symmetric $m$-player games has a non-symmetric Nash equilibrium is $\exists\mathbb{R}$-complete when $m\geq 3$, answering a question of Garg, Mehta, Vazirani, and Yazdanbod.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源