论文标题
对于Anosov的同位素地图的熵的不变性
Invariance of entropy for maps isotopic to Anosov
论文作者
论文摘要
我们证明,在$ \ Mathbb {t}^d $的部分多透明差异性的类别中,拓扑熵保持不变(也就是说,当将其分解为具有控制的几何形状的一个维度捆绑中时),因此它们对$ h_1(\ m _1(\ nathbb)的诱导作用均为promplebbbb thebb the thembb sprybbol。在没有简单条件的情况下,我们构建了一个稳健的及时反例。
We prove the topological entropy remains constant inside the class of partially hyperbolic diffeomorphisms of $\mathbb{T}^d$ with simple central bundle (that is, when it decomposes into one dimensional sub-bundles with controlled geometry) and such that their induced action on $H_1(\mathbb{T}^d)$ is hyperbolic. In absence of the simplicity condition we construct a robustly transitive counter-example.