论文标题

结合渐进式重新思考和协作学习:环内过滤的深度框架

Combining Progressive Rethinking and Collaborative Learning: A Deep Framework for In-Loop Filtering

论文作者

Wang, Dezhao, Xia, Sifeng, Yang, Wenhan, Liu, Jiaying

论文摘要

在本文中,我们旨在解决(1)基于深度学习的环内滤波器的(2)侧面信息注入(2)侧面信息注入的问题。对于(1),我们设计了一个深厚的网络,既有渐进的重新思考和协作学习机制,又可以提高重建的框架内和框架间的质量。对于内部编码,渐进式重新思考网络(PRN)旨在模拟人类决策机制,以进行有效的空间建模。我们设计的块引入了额外的块间连接,以绕过跨块瓶颈模块之前的高维信息,以查看过去的记忆经历并逐渐重新考虑。对于间编码,当前的重建帧与参考帧(峰质量帧和最近的相邻帧)在功能级别上进行协作。对于(2),我们提取框架内和框架间的侧面信息,以进行更好的上下文建模。基于HEVC分区树的粗到细分区映射是作为框内侧面信息构建的。此外,将参考帧的扭曲功能作为框架间信息提供。与HEVC基线相比,我们的PRN带有框内侧面信息的PRN平均降低了9.0%的BD率降低(AI)配置。在低延迟B(LDB),低延迟P(LDP)和随机访问(RA)配置下,我们的PRN具有框架间侧面信息的平均降低9.0%,10.6%和8.0%的BD率降低。我们的项目网页是https://dezhao-wang.github.io/prn-v2/。

In this paper, we aim to address issues of (1) joint spatial-temporal modeling and (2) side information injection for deep-learning based in-loop filter. For (1), we design a deep network with both progressive rethinking and collaborative learning mechanisms to improve quality of the reconstructed intra-frames and inter-frames, respectively. For intra coding, a Progressive Rethinking Network (PRN) is designed to simulate the human decision mechanism for effective spatial modeling. Our designed block introduces an additional inter-block connection to bypass a high-dimensional informative feature before the bottleneck module across blocks to review the complete past memorized experiences and rethinks progressively. For inter coding, the current reconstructed frame interacts with reference frames (peak quality frame and the nearest adjacent frame) collaboratively at the feature level. For (2), we extract both intra-frame and inter-frame side information for better context modeling. A coarse-to-fine partition map based on HEVC partition trees is built as the intra-frame side information. Furthermore, the warped features of the reference frames are offered as the inter-frame side information. Our PRN with intra-frame side information provides 9.0% BD-rate reduction on average compared to HEVC baseline under All-intra (AI) configuration. While under Low-Delay B (LDB), Low-Delay P (LDP) and Random Access (RA) configuration, our PRN with inter-frame side information provides 9.0%, 10.6% and 8.0% BD-rate reduction on average respectively. Our project webpage is https://dezhao-wang.github.io/PRN-v2/.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源