论文标题
深层冰:MRI颅内空腔提取的深度学习方法
Deep ICE: A Deep learning approach for MRI Intracranial Cavity Extraction
论文作者
论文摘要
通过MRI数据测量标准化区域脑体积的自动方法是帮助对许多神经系统疾病进行客观诊断和随访的关键工具。为了估计这种区域脑体积,颅内腔体积通常用于归一化。在本文中,我们提出了一种准确有效的方法,可以使用体积3D卷积神经网络自动分割颅内空腔,并提出一种新的3D贴片提取策略,专门适用于处理有监督的细分中可用的传统培训案例和现代GPU的内存限制。将所提出的方法与最近的最新方法进行了比较,结果表明,在计算负担方面的表现非常出色。
Automatic methods for measuring normalized regional brain volumes from MRI data are a key tool to help in the objective diagnostic and follow-up of many neurological diseases. To estimate such regional brain volumes, the intracranial cavity volume is commonly used for normalization. In this paper, we present an accurate and efficient approach to automatically segment the intracranial cavity using a volumetric 3D convolutional neural network and a new 3D patch extraction strategy specially adapted to deal with the traditional low number of training cases available in supervised segmentation and the memory limitations of modern GPUs. The proposed method is compared with recent state-of-the-art methods and the results show an excellent accuracy and improved performance in terms of computational burden.