论文标题

GMUNU:朝向多方面的爱因斯坦田间方程求解器,用于通用流体动力学模拟

Gmunu: Toward multigrid based Einstein field equations solver for general-relativistic hydrodynamics simulations

论文作者

Cheong, Patrick Chi-Kit, Lin, Lap-Ming, Li, Tjonnie Guang-Feng

论文摘要

我们提出了一种新的开源轴对称性一般相对论流体动力学代码GMUNU(一般性偏移多数式数值求解器),该代码使用多机方法在相结合平面条件(CFC)上求解椭圆形度量方程。大多数现有的相对论流体动力学代码基于依赖数值相对性的自由进化方法的制剂,其中度量变量是由双曲线方程确定的,而无需执行进化中的约束方程。另一方面,尽管完全约束的进化公式是理论上更具吸引力的,并且应该导致更稳定和准确的模拟,但是这种方法并没有被广泛使用,因为在演变过程中求解椭圆型型约束方程通常在计算机上比增压自由进化方案更昂贵。 Multigrid方法通过离散化的层次结构求解微分方程,其计算成本通常低于其他方法,例如直接方法,放松方法,连续的过度释放。使用Multigrid加速度,可以在可比的时间尺度上与解决流体动力学方程相当地求解度量方程。这可能会使完全约束的进化公式在数值相对性模拟中更负担得起。作为评估相对论模拟中多机方法的性能和鲁棒性的第一步,我们开发了一个流体动力学代码,该代码使用标准有限量方法,并与多机制度量求解器相连,以在CFC近似中求解爱因斯坦方程。在本文中,我们介绍了我们的代码GMUNU及其属性和性能的方法和实施,并在某些基准测试相对论流体动力学问题中。

We present a new open-source axisymmetric general relativistic hydrodynamics code Gmunu (General-relativistic multigrid numerical solver) which uses a multigrid method to solve the elliptic metric equations in the conformally flat condition (CFC) approximation on a spherical grid. Most of the existing relativistic hydrodynamics codes are based on formulations which rely on a free-evolution approach of numerical relativity, where the metric variables are determined by hyperbolic equations without enforcing the constraint equations in the evolution. On the other hand, although a fully constrained-evolution formulation is theoretical more appealing and should lead to more stable and accurate simulations, such an approach is not widely used because solving the elliptic-type constraint equations during the evolution is in general more computationally expensive than hyperbolic free-evolution schemes. Multigrid methods solve differential equations with a hierarchy of discretizations and its computational cost is generally lower than other methods such as direct methods, relaxation methods, successive over-relaxation. With multigrid acceleration, one can solve the metric equations on a comparable time scale as solving the hydrodynamics equations. This would potentially make a fully constrained-evolution formulation more affordable in numerical relativity simulations. As a first step to assess the performance and robustness of multigrid methods in relativistic simulations, we develop a hydrodynamics code that makes use of standard finite-volume methods coupled with a multigrid metric solver to solve the Einstein equations in the CFC approximation. In this paper, we present the methodology and implementation of our code Gmunu and its properties and performance in some benchmarking relativistic hydrodynamics problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源