论文标题

旋转器,格子和整体apollonian磁盘包装的分类

Spinors, lattices, and classification of integral Apollonian disk packings

论文作者

Kocik, Jerzy

论文摘要

介绍了通过成对的二维积分向量对积分笛卡尔配置(以及有效的Apollonian磁盘包装)的参数化。在这里定义为成对的切线磁盘定义的矢量是与克利福德代数相关的三维Minkowski空间的旋转器。给出了Pauli Spinors的版本。该结构为已知的二磷剂方程参数化的整体蛋白包装提供了一种新颖的解释。

A parametrization of integral Descartes configurations (and effectively Apollonian disk packings) by pairs of two-dimensional integral vectors is presented. The vectors, called here tangency spinors defined for pairs of tangent disks, are spinors associated to the Clifford algebra for three-dimensional Minkowski space. A version with Pauli spinors is given. The construction provides a novel interpretation to the known Diophantine equation parametrizing integral Apollonian packings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源