论文标题

具有非负N-Bakryémeryricci曲率的非划分空间的分裂定理和拓扑结构

The Splitting Theorem and Topology of Noncompact Spaces with Nonnegative N-Bakry Émery Ricci Curvature

论文作者

Lim, Alice

论文摘要

在本文中,我们将非负RICCI曲率的非绘制歧管闻名的拓扑结果概括为具有非负$ n $ bakryémeryémeryricci曲率的空间。我们研究了与非负$ n $ bakryémeryricci曲率的空间有关的分裂定理和称为无穷大属性的属性。此外,我们表明,如果$ m^n $是一个完整的,非算力的riemannian歧管,则具有非负$ n $ bakryémeryricci curvature,其中$ n> n $,则$ h_ {n-1}(m,mathbb {z}})$是$ 0 $ $ 0 $。

In this paper, we generalize topological results known for noncompact manifolds with nonnegative Ricci curvature to spaces with nonnegative $N$-Bakry Émery Ricci curvature. We study the Splitting Theorem and a property called the geodesic loops to infinity property in relation to spaces with nonnegative $N$-Bakry Émery Ricci Curvature. In addition, we show that if $M^n$ is a complete, noncompact Riemannian manifold with nonnegative $N$-Bakry Émery Ricci curvature where $N>n$, then $H_{n-1}(M,\mathbb{Z})$ is $0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源