论文标题

一维各向同性磁铁中自旋传输的通用类别:对数异常的发作

Universality classes of spin transport in one-dimensional isotropic magnets: the onset of logarithmic anomalies

论文作者

De Nardis, Jacopo, Medenjak, Marko, Karrasch, Christoph, Ilievski, Enej

论文摘要

我们报告了一项系统的研究,该研究对具有各向同性自旋相互作用的量子和经典的一维磁体中有限温度的自旋转运,包括可集成和不可积分模型。在时间依赖性随机环境中,采用基于广义汉堡方程的现象学框架,我们确定了四种不同的自旋波动类别。除了正常的自旋扩散外,这些类型的超级延伸类型包括:KPZ通用类别和两种不同类型的异常扩散,并具有乘法对数校正。在各种量子和经典链的示例上,广泛的数值模拟支持我们的预测。与普遍的信念相反,我们证明,即使是不可融合的自旋链也可以在有限温度下显示出不同的自旋扩散常数。

We report a systematic study of finite-temperature spin transport in quantum and classical one-dimensional magnets with isotropic spin interactions, including both integrable and non-integrable models. Employing a phenomenological framework based on a generalized Burgers' equation in a time-dependent stochastic environment, we identify four different universality classes of spin fluctuations. These comprise, aside from normal spin diffusion, three types of superdiffusive transport: the KPZ universality class and two distinct types of anomalous diffusion with multiplicative logarithmic corrections. Our predictions are supported by extensive numerical simulations on various examples of quantum and classical chains. Contrary to common belief, we demonstrate that even non-integrable spin chains can display a diverging spin diffusion constant at finite temperatures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源