论文标题
基于少数属性的同质性会阻碍结构平衡
Homophily based on few attributes can impede structural balance
论文作者
论文摘要
人们认为两种互补的机制可以塑造社会群体:在互联三合会中的代理之间同质和结构平衡。在这里,我们考虑了$ n $完全连接的代理,每个代理都具有$ g $的基本属性,并且使用属性空间中代理之间的相似性(即同性恋)来确定它们之间的链接权重。为了结合结构平衡,我们使用一个三合一更新的规则,其中在每个更新中仅故意更改一个代理的一个属性,但这也会导致链接权重甚至链接极性的意外变化。大型$ G $极限的链路权重动力学由Fokker-Planck方程描述,从中可以从中获得相位过渡到完全平衡状态具有所有链接的条件。但是,这种全球合作的“天堂状态”很难实现,需要$ g> o(n^2)$和$ p> 0.5 $,其中参数$ p $捕获了愿意达成共识的意愿。允许边缘权重是属性的结果自然会捕获同质,并揭示了许多现实世界中的社会系统将具有实现结构平衡所需的亚临界属性。
Two complementary mechanisms are thought to shape social groups: homophily between agents and structural balance in connected triads. Here we consider $N$ fully connected agents, where each agent has $G$ underlying attributes, and the similarity between agents in attribute space (i.e., homophily) is used to determine the link weight between them. To incorporate structural balance we use a triad-updating rule where only one attribute of one agent is changed intentionally in each update, but this also leads to accidental changes in link weights and even link polarities. The link weight dynamics in the limit of large $G$ is described by a Fokker-Planck equation from which the conditions for a phase transition to a fully balanced state with all links positive can be obtained. This "paradise state" of global cooperation is, however, difficult to achieve requiring $G > O(N^2)$ and $p>0.5$, where the parameter $p$ captures a willingness to consensus. Allowing edge weights to be a consequence of attributes naturally captures homophily and reveals that many real-world social systems would have a subcritical number of attributes necessary to achieve structural balance.