论文标题

$ l^2 $估计$ \ mathbb {c}^n $ in convex域上的poincaré-lelong方程式的估计值

$L^2$ estimates of Poincaré-Lelong equations on convex domains in $\mathbb{C}^n$

论文作者

Dai, Shaoyu, Liu, Yang, Pan, Yifei

论文摘要

在本文中,我们证明了Poincaré-Lelong方程的解决方案$ \ sqrt {-1} \ partial \ bar {\ partial} u = f $在严格凸的域$ \ subset \ subset \ subset \ subset \ subset \ subset \ subset \ subset \ subset \ mathb {c} c}^n $ $ geq $ f $ f $ f $ f $ f $中并在加权希尔伯特空间中$ l^2 _ {(1,1)}(ω,e^{ - φ})$。本文的新颖性是将加权的$ l^2 $版本的PoincaréLemma用于真正的$ 2 $ -FORMS,然后将Hörmander的$ L^2 $ Solutions应用于Cauchy-Riemann方程。

In this paper, we prove the existence of solutions of the Poincaré-Lelong equation $\sqrt{-1}\partial\bar{\partial}u=f$ on a strictly convex bounded domain $Ω\subset\mathbb{C}^n$ $(n\geq1)$, where $f$ is a $d$-closed $(1,1)$ form and is in the weighted Hilbert space $L^2_{(1,1)}(Ω,e^{-φ})$. The novelty of this paper is to apply a weighted $L^2$ version of Poincaré Lemma for real $2$-forms, and then apply Hörmander's $L^2$ solutions for Cauchy-Riemann equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源