论文标题
来自不完整网络的真实非线性动力学
True Nonlinear Dynamics from Incomplete Networks
论文作者
论文摘要
我们研究复杂网络上的非线性动力学。每个顶点$ i $都有一个状态$ x_i $,该$根据稳态$ x_i^*$的网络动力学进化。我们开发了基本的工具来学习网络一小部分的真正稳态,而不知道完整的网络。一种天真的方法和当前的最新方法是遵循观察到的部分网络的动力学到局部平衡。这极大地无法提取真实的稳定状态。我们使用均值场方法将网络看不见的部分的动力学映射到单个节点,这使我们能够恢复从生态学到社交网络再到基因调控的域中的5个观察到的稳态估计。实际上,不完整的网络是规范,我们提供了新的方法来思考非线性动态时,只有稀疏的信息可用。
We study nonlinear dynamics on complex networks. Each vertex $i$ has a state $x_i$ which evolves according to a networked dynamics to a steady-state $x_i^*$. We develop fundamental tools to learn the true steady-state of a small part of the network, without knowing the full network. A naive approach and the current state-of-the-art is to follow the dynamics of the observed partial network to local equilibrium. This dramatically fails to extract the true steady state. We use a mean-field approach to map the dynamics of the unseen part of the network to a single node, which allows us to recover accurate estimates of steady-state on as few as 5 observed vertices in domains ranging from ecology to social networks to gene regulation. Incomplete networks are the norm in practice, and we offer new ways to think about nonlinear dynamics when only sparse information is available.