论文标题
新的原始二重性薄弱的galerkin有限元方法,用于对流扩散问题
New Primal-Dual Weak Galerkin Finite Element Methods for Convection-Diffusion Problems
论文作者
论文摘要
本文为对流扩散方程式设计了一种新的原始双二重弱彩素有限元方法。在各种离散规范和标准的$ l^2 $规范中,为原始双重弱的彩色彩手近似值建立了最佳订单误差估计。进行了一系列数值实验并报告了以验证理论发现。
This article devises a new primal-dual weak Galerkin finite element method for the convection-diffusion equation. Optimal order error estimates are established for the primal-dual weak Galerkin approximations in various discrete norms and the standard $L^2$ norms. A series of numerical experiments are conducted and reported to verify the theoretical findings.