论文标题

超级量子力学中的超级综合性和双$ -1 $ -1 $ hahn代数

Superintegrability and the dual $-1$ Hahn algebra in superconformal quantum mechanics

论文作者

Bernard, Pierre-Antoine, Gaboriaud, Julien, Vinet, Luc

论文摘要

确定并精确地解决了具有内部自由度的奇异振荡器的二维可整合系统。它的对称代数被认为是双$ -1 $ hahn代数,它描述了多项式的双光谱属性,其名称本质上是SuperConformal Elgebra $ \ Mathfrak {osp}(osp}(osp}(1 | 2)$的Clebsch-Gordan系数。还显示了如何从四个维度中的一组未耦合的谐波振荡器的尺寸降低下获得这种可整合的模型。

A two-dimensional superintegrable system of singular oscillators with internal degrees of freedom is identified and exactly solved. Its symmetry algebra is seen to be the dual $-1$ Hahn algebra which describes the bispectral properties of the polynomials with the same name that are essentially the Clebsch-Gordan coefficients of the superconformal algebra $\mathfrak{osp}(1|2)$. It is also shown how this superintegrable model is obtained under dimensional reduction from a set of uncoupled harmonic oscillators in four dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源