论文标题
NMR松弛和限制在聚合物基质中的项的NMR松弛和扩散的分子动力学模拟
Molecular Dynamics Simulations of NMR Relaxation and Diffusion of Heptane Confined in a Polymer Matrix
论文作者
论文摘要
NMR表面放松背后的机制和大型$ T_1 $/$ T_2 $比率的光碳氢化合物的比率限制在动质的纳米倍数中,仍然知之甚少,因此引起了很多争论。为了将分子尺度分辨率带入该问题,我们提出了分子动力学(MD)模拟,$^1 $ H NMR松弛和项中的含己烷扩散在聚合物基质中,其中高雾化性聚合物是可为赫帕坦提供了有机“表面”的动力学和沥青的模型。我们计算$^1 $ h-$ h-$ h-$ h- $ h- $ h- $ h- $ h偶极 - 偶极 - 二极管相互作用在聚合物矩阵中的偶极相互作用,并使用它来生成$ t_1 $和$ t_2 $放松的$ t_1 $和$ t_2 $放宽的依赖性。我们发现,增加的分子限制会增加亨普烷分子的相关时间,从而减少了聚合物基质中项的表面松弛时间。对于弱限制($ ϕ_ {C7}> 50 $ vol%),我们发现$ t_ {1s}/t_ {2s} \ simeq 1 $。在强限制($ ϕ_ {c7} \ Lessim $ 50 vol%)下,我们发现比率$ t_ {1s}/t_ {2s} {2S} \ gtrsim 4 $增加,随着$ ϕ__ {c7} $的减少而增加,并且分散性关系$ t_ proniment $ t_ {1s $ t_ iS prepto f _ ins prepto f _0沥青。沥青中的这种频率依赖性先前已归因于顺磁性,但是我们的研究表明,有机纳米孔孔封闭增强了$^1 $ h-$^1 $ h-$^1 $ h偶极 - 偶极 - 偶极 - 偶极 - 偶极偶极相互作用在无需调用paramagnetism的情况下,在饱和有机的富含天鹅绒中占据了NMR响应。
The mechanism behind the NMR surface relaxation and the large $T_1$/$T_2$ ratio of light hydrocarbons confined in the nano-pores of kerogen remains poorly understood, and consequently has engendered much debate. Towards bringing a molecular-scale resolution to this problem, we present molecular dynamics (MD) simulations of $^1$H NMR relaxation and diffusion of heptane in a polymer matrix, where the high-viscosity polymer is a model for kerogen and bitumen that provides an organic "surface" for heptane. We calculate the autocorrelation function $G(t)$ for $^1$H-$^1$H dipole-dipole interactions of heptane in the polymer matrix and use this to generate the NMR frequency ($f_0$) dependence of $T_1$ and $T_2$ relaxation times as a function of $ϕ_{C7}$. We find that increasing molecular confinement increases the correlation time of the heptane molecule, which decreases the surface relaxation times for heptane in the polymer matrix. For weak confinement ($ϕ_{C7} > 50$ vol%), we find that $T_{1S}/T_{2S} \simeq 1$. Under strong confinement ($ϕ_{C7} \lesssim $ 50 vol%), we find that the ratio $T_{1S}/T_{2S} \gtrsim 4$ increases with decreasing $ϕ_{C7}$, and that the dispersion relation $T_{1S} \propto f_0$ is consistent with previously reported measurements of polymers and bitumen. Such frequency dependence in bitumen has been previously attributed to paramagnetism, but our studies suggests that $^1$H-$^1$H dipole-dipole interactions enhanced by organic nano-pore confinement dominates the NMR response in saturated organic-rich shales, without the need to invoke paramagnetism.