论文标题

机器学习协助移交和用于蜂窝连接无人机的资源管理

Machine Learning assisted Handover and Resource Management for Cellular Connected Drones

论文作者

Azari, Amin, Ghavimi, Fayezeh, Ozger, Mustafa, Jantti, Riku, Cavdar, Cicek

论文摘要

使无人机的蜂窝连接引入了许多挑战和机遇。细胞连接无人机的通信受到三维迁移率和视线通道特征的影响,这会导致高度增加的移交数量。我们在空中和地面用户共存的细胞计划模拟表明,从无人机到基站的严重干扰是地面用户上行链路通信的主要挑战。在这里,我们首先提出了陆地和无人机通信共存的主要挑战,即考虑斯德哥尔摩的实际地理网络数据。然后,我们为关键绩效指标(KPI)得出分析模型,包括蜂窝网络上的通信延迟和干扰,并制定移交和无线电资源管理(H-RRM)优化问题。之后,我们将此问题转变为机器学习问题,并提出了一种深入的加强学习解决方案来解决H-RRM问题。最后,使用仿真结果,我们介绍了无人机的速度和高度以及可忍受的干扰水平如何塑造网络中最佳的H-RRM策略。尤其是,已经提出了不同无人机高度/速度中切换决策的热图,这促进了对传统移交方案的修订,并重新定义了天空中细胞的边界。

Enabling cellular connectivity for drones introduces a wide set of challenges and opportunities. Communication of cellular-connected drones is influenced by 3-dimensional mobility and line-of-sight channel characteristics which results in higher number of handovers with increasing altitude. Our cell planning simulations in coexistence of aerial and terrestrial users indicate that the severe interference from drones to base stations is a major challenge for uplink communications of terrestrial users. Here, we first present the major challenges in co-existence of terrestrial and drone communications by considering real geographical network data for Stockholm. Then, we derive analytical models for the key performance indicators (KPIs), including communications delay and interference over cellular networks, and formulate the handover and radio resource management (H-RRM) optimization problem. Afterwards, we transform this problem into a machine learning problem, and propose a deep reinforcement learning solution to solve H-RRM problem. Finally, using simulation results, we present how the speed and altitude of drones, and the tolerable level of interference, shape the optimal H-RRM policy in the network. Especially, the heat-maps of handover decisions in different drone's altitudes/speeds have been presented, which promote a revision of the legacy handover schemes and redefining the boundaries of cells in the sky.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源